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Motivation for Measuring Dissipation Rate

•Dissipation in Turbulent Nonpremixed
Combustion
• Nonpremixed flame structure strongly tied to 

underlying scalar dissipation rate
• In fast chemistry limit the reaction rate is• In fast chemistry limit the reaction rate is 

proportional to scalar dissipation rate
• For finite rate chemistry the scalar dissipation y p

affects the degree of nonequilibrium
• Thermal dissipation may be used as a surrogate 

for scalar dissipationfor scalar dissipation
• Kinetic energy dissipation important for modeling 

and understanding flame physicsg p y
• Very little is known of the dissipative structure of 

turbulent flames



Characteristics of Dissipation Fluctuations
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Characteristics of Dissipation Fluctuations

Sreenivasan (2004)

Su & Clemens (2002)

• Instantaneous dissipation is much larger than the• Instantaneous dissipation is much larger than the 
mean

• Measurements of mean dissipation important in p p
turbulence modeling



Dissipative Scales

• Dissipation is important only at the smallest scales where 
gradients are largest

K l (1941)

Kolmogorov scale: ( ) 4/13 ενη ≡ ← Finest scale in velocity field
(Fi t l dd ?)

• Kolmogorov (1941)

(Finest scale eddy?)

(Sc = ν / D where D is the mass diffusivity)

• Batchelor (1959) scale - Sc » 1

Batchelor scale: 2/1−= ScB ηλ ← Finest scale in concentration field

(Sc = ν / D, where D is the mass diffusivity)

4/3−= ScηλObukhov Corsin:

• Obukhov-Corsin scale - Sc < 1

= ScOC ηλObukhov-Corsin:



Energy Spectra of u'(t) and  ∂u'/∂t
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Spectral Cutoff Frequencies

• Batchelor Frequencies: 

κ 1
≡ Uf ≡

200
Dissipation Spectrum
60λΒ

• Typically data are filtered to fB
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The Problem of Noise
C i f Di i ti S tComparison of Dissipation Spectra

Anselmet, Djeridi, 
Dowling (1991)

, j ,
Fulachier (1997)

C ld i di i tiCold-wire dissipation 
spectrum computed 

without filtering

Non-reacting flow 
Rayleigh scattering

(20W laser ethylene)without filtering (20W laser, ethylene)



Resolution Requirements for Mean Dissipation

• Wyngaard (1971) ; Antonia & Mi (1993): 2-3ηy g ( ) ( ) η

• George and Hussein (1991): <1η

• Ewing, Hussein, George (1995): 3ηg, , g ( ) η

• Anselmet, Djeridi, Fulachier (1997): 3 to 6η

• Buch & Dahm (1998): The smallest turbulent structuresBuch & Dahm (1998): The smallest turbulent structures 
are of order 6η

• Su & Clemens (2002): The smallest turbulent structures 
are of order 7η



Mean Scalar Dissipation: Su & Clemens (1999)

(y/h)-3

Bilger (2004): Measurements should 
obey global conservation



Measurement System Model

n(x)
Resolution
(  bl )

Post-processing

Noise

h(x) h p [n]θ (x) θ m [n] θ p [n]

(e.g. blur) (e.g. low-pass filter)

Data reduction

(e g  signal to temperature)

h g [n]θ r [n] ( ) 2g[n] χ m [n]

Gradient 

(e.g. signal to temperature)

g[n] ( ) χ [n]

2D[n]
Diffusivity

[ ]

Wang, Clemens, Barlow, Varghese, MST 2007



Measurement System Model

For 1D linear operations, these sub-models can 
be characterized as:

nhrm += θθ *

Post processingh θθ *=

Measurement with 
additive noise

Post-processing mpp h θθ *=

Data-reduction dp θθ →

Gradientdgm hg θ*=

Di i ti2||2D Dissipation 2||2 mgD=χ



Measurement System Model

• Model resolution and noise effects on turbulence by using 
Pope’s (2000) model spectrum

H(κ) D(κ) = 2νκ2E(κ)
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• Similar to probe resolution studies by Wyngaard (1971); 
Ewing, George, Hussein (1995) 



Spatial Averaging Effect

1 0

Averaging Filter Transfer Function 
(e.g. blur, pixel size, hot-wire diameter)
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Effect of Gradient Stencil

• Resolving efficiency of the gradient stencil
1.0
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3-pt central
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• Severe attenuation with central difference

• Better performance with high order Padé scheme



Resolution + Gradient Stencil Effect
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• 2nd Order central difference (sampled at t ice c toff )• 2nd Order central difference (sampled at twice cutoff κB) 

• All techniques attempting to measure same physical scale but 
have different resolution requirements to do sohave different resolution requirements to do so



Effect of Noise on Spectra
104

• Energy spectrum with noise 
floor

101

102

103

10

TNR2=Energy

• Dissipation spectrum2

10-1

100

101

E* θ1
(κ

* 1)

Noise Floor

( )[ ] ( ) NFEE m += 1111 κκ

Dissipation spectrum
⇒ noise floor amplified   

when oversampled
10-4 10-3 10-2 10-1 100

10-3

10-2

κ1λB

0.8

• Flames measurements are

0.6

DNR2=Dissipation ( )[ ] ( )[ ]NFEDD m += 11
2
111 2 κκκ

• Flames measurements are 
virtually always in this 
regime0.2

0.4

D
* θ1

(κ
* 1)

0.0 0.5 1.0 1.5 2.0
0.0

κ1λB
Apparent dissipation



Effect of Resolution and Noise
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Time-Resolved Thermal Dissipation in 
Turbulent Nonpremixed Jet Flames



Thermal Dissipation

•It is difficult to make accurate mixture fraction 
dissipation measurements in flamesdissipation measurements in flames
• Instead use thermal dissipation as a surrogate for 

obtaining information about 

• Higher signals for Rayleigh scattering vs. Raman
• Can get time-resolved data!

• Obtain basic information about turbulence 
characteristics (frequencies, length-scales, etc.)

• Obtain estimates of resolution requirements valid• Obtain estimates of resolution requirements valid 
for scalar dissipation



Experiment
• Two-point-redundant high-repetition rate laser Rayleigh system

•High average power (72 W) Nd:YAG laser at 532nm
•10 kHz repetition rate
•Spatial resolution 300 µm, beam diameter, slit width, separation
•SNR ~ 65 for air at room temperature

• Fuel
 

x /d =  8 0

•22.1% CH4, 33.2% H2 and 44.7% N2
•TNF workshop simple jet flame (DLR_A)

• Bergmann et al (1998)
U C

x /d  =  6 0

Bergmann et al. (1998)
• Meier et al. (2000)
• Schneider et al. (2003)

•Const effective Rayleigh 
δ  

U ∞ U ∞

x /d  =  4 0

cross-section (±3%)

• Conditions
•Coflowing, nonpremixed jet flame

U ∞U ∞

x
Coflowing, nonpremixed jet flame

•Red = 15,200
•fS = 10 kHz, sampling time period = 6 s

r

d  



High-Repetition Rate Rayleigh Scattering Setup



Temperature and Dissipation Calculations

•Temperature: refrefR

I
C

I
TI

T == ,

I is the reference Rayleigh signal from air at room

RR II

IR,ref is the reference Rayleigh signal from air at room 
temperature (Tref), IR is the Rayleigh signal

•Thermal dissipation rate (inferred by usingThermal dissipation rate (inferred by using 
Taylor’s hypothesis)

( )222 TU ∂∂− ( )22
, 2 tTUxT ∂∂= αχ



Energy Spectra Correction

• Gaskey et al. (1990)

• Miller and Dimotakis
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O t ti l

Centerline Turbulent Time Scales
•Outer time scale:

• Integral time scale: 0 6
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Ratio of Outer Scales along Centerline
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Why the dip near the flame tip?
• Why is there a dip in the integral 

scale near the flame tip?

S ff f
T 

TAD

• Similar effect seen by Renfro et 
al. (2002) with OH time-series

• Caused by state relationship
ξ 

300

ξst 1

• Caused by state relationship 
between temperature and 
mixture fraction ξst

ξl

ξ 

• Shows that temperature 
fluctuations will exhibit smaller 
length scales than mixture

t 

Tllength scales than mixture 
fraction

• Shown empirically by Wang

T TAD 
T

Shown empirically by Wang, 
Karpetis, Barlow (2007) t



Corrected Energy and Dissipation Spectra
PSDs computed by:

• auto-correlation (single-
b )
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Corrected Energy and Dissipation Spectra
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Corrected Dissipation Spectra, Red=15,000
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Overlapping spectra indicate strong coupling between energy Overlapping spectra indicate strong coupling between energy 
producing and dissipation scales

• May be problematic for models that require independence 
of dissipation scales



Conclusions

•Dissipation affected by interaction among spatial 
averaging, discrete sampling, gradient-filter and g g, p g, g
noise

•Many previous measurements in flames a y p e ous easu e e s a es
incompletely quantify these effects and are 
therefore suspect

•Our system model helps us to understand these 
effects and enables meaningful measurement of 
dissipation


