The University of Texas at Austin Department of Aerospace Engineering and Engineering Mechanics

The Measurement of Dissipation in Turbulent Flames: A Major Challenge for Laser Diagnostics

Noel T. Clemens

Acknowledgements

Guanghua Wang, Philip Varghese, Rob Barlow Sponsored by NSF

Publications

Wang, Clemens, Barlow, Varghese, "A System Model for Assessing Scalar Dissipation Measurement Accuracy in Turbulent Flows," *Measurement Science and Technology*, 2007

- Wang, Clemens, Varghese, Barlow, "Turbulent Time Scales in a Nonpremixed Turbulent Jet Flame by Using High-Repetition Rate Thermometry," *Combustion and Flame*, 2007
- Wang, Barlow, Clemens, "Quantification of Resolution and Noise Effects on Thermal Dissipation Measurements in Turbulent Non-premixed Jet Flames," *Proceedings of the Combustion Institute*, Vol., 2007

Wang, Clemens and Varghese, "High-Repetition Rate Measurements of Temperature and Thermal Dissipation in a Nonpremixed Turbulent Jet Flame," *Proceedings of the Combustion Institute*, 2005

Motivation for Measuring Dissipation Rate

- Dissipation in Turbulent Nonpremixed
 Combustion
 - Nonpremixed flame structure strongly tied to underlying scalar dissipation rate
 - In fast chemistry limit the reaction rate is proportional to scalar dissipation rate
 - For finite rate chemistry the scalar dissipation affects the degree of nonequilibrium
 - Thermal dissipation may be used as a surrogate for scalar dissipation
 - Kinetic energy dissipation important for modeling and understanding flame physics
 - Very little is known of the dissipative structure of turbulent flames

Characteristics of Dissipation Fluctuations

Characteristics of Dissipation Fluctuations

Su & Clemens (2002)

- Instantaneous dissipation is much larger than the mean
- Measurements of mean dissipation important in turbulence modeling

Dissipative Scales

- Dissipation is important only at the smallest scales where gradients are largest
- Kolmogorov (1941)

Kolmogorov scale: $\eta \equiv \left(v^3 / \overline{\varepsilon} \right)^{1/4} \leftarrow Finest scale in velocity field$ (Finest scale eddy?)

Batchelor (1959) scale - Sc » 1

(Sc = v / D, where D is the mass diffusivity)

Batchelor scale: $\lambda_B = \eta S c^{-1/2} \leftarrow Finest scale in concentration field$

Obukhov-Corsin scale - Sc < 1

Obukhov-Corsin: $\lambda_{OC} = \eta Sc^{-3/4}$

Energy Spectra of u'(t) and $\partial u'/\partial t$

Spectral Cutoff Frequencies

Batchelor Frequencies:

- Typically data are filtered to $f_{\rm B}$ and sampled at 2 $f_{\rm B}$
- Both Batchelor frequencies correspond to a physical lengthscale of λ=6λ_B

 $κ_B and f_B correspond to λ_D defined by$ Buch & Dahm (1998)

The Problem of Noise

Comparison of Dissipation Spectra

spectrum computed without filtering

Rayleigh scattering (20W laser, ethylene)

Resolution Requirements for Mean Dissipation

- Wyngaard (1971) ; Antonia & Mi (1993): 2-3η
- George and Hussein (1991): <1η
- Ewing, Hussein, George (1995): 3η
- Anselmet, Djeridi, Fulachier (1997): 3 to 6η
- Buch & Dahm (1998): The smallest turbulent structures are of order 6η
- Su & Clemens (2002): The smallest turbulent structures are of order 7η

Mean Scalar Dissipation: Su & Clemens (1999)

Bilger (2004): Measurements should obey global conservation

Measurement System Model

Wang, Clemens, Barlow, Varghese, MST 2007

Measurement System Model

For 1D linear operations, these sub-models can be characterized as:

. .

$\theta_m = h_r * \theta + n$	Measurement with additive noise
$\theta_p = h_p * \theta_m$	Post-processing
$\theta_p \to \theta_d$	Data-reduction
$g_m = h_g * \theta_d$	Gradient
$\chi = 2D g_m ^2$	Dissipation

Measurement System Model

 Model resolution and noise effects on turbulence by using Pope's (2000) model spectrum

 Similar to probe resolution studies by Wyngaard (1971); Ewing, George, Hussein (1995)

Spatial Averaging Effect

Cutoff wavenumber of the filter: $\kappa_r = 0.5 \kappa_B$

Effect of Gradient Stencil

Resolving efficiency of the gradient stencil

- Severe attenuation with central difference
- Better performance with high order Padé scheme

Resolution + Gradient Stencil Effect

• 2nd Order central difference (sampled at twice cutoff κ_B)

 All techniques attempting to measure same physical scale but have different resolution requirements to do so

Effect of Noise on Spectra

 Energy spectrum with noise floor

$$\left[E_1(\kappa_1)\right]_m = E_1(\kappa_1) + NF$$

 Dissipation spectrum
 ⇒ noise floor amplified when oversampled

$$\left[D_1(\kappa_1)\right]_m = 2D \kappa_1^2 \left[E_1(\kappa_1) + NF\right]$$

 Flames measurements are virtually always in this regime

Apparent dissipation

Effect of Resolution and Noise

Time-Resolved Thermal Dissipation in Turbulent Nonpremixed Jet Flames

Thermal Dissipation

- It is difficult to make accurate mixture fraction dissipation measurements in flames
 - Instead use thermal dissipation as a surrogate for obtaining information about
 - Higher signals for Rayleigh scattering vs. Raman
 - Can get time-resolved data!
 - Obtain basic information about turbulence characteristics (frequencies, length-scales, etc.)
 - Obtain estimates of resolution requirements valid for scalar dissipation

Experiment

- Two-point-redundant high-repetition rate laser Rayleigh system
 - •High average power (72 W) Nd:YAG laser at 532nm
 - •10 kHz repetition rate
 - •Spatial resolution 300 μ m, beam diameter, slit width, separation
 - •SNR ~ 65 for air at room temperature

Fuel

•22.1% CH4, 33.2% H2 and 44.7% N2

•TNF workshop simple jet flame (DLR_A)

- Bergmann et al. (1998)
- Meier et al. (2000)
- Schneider et al. (2003)
- Const effective Rayleigh cross-section (±3%)

Conditions

- Coflowing, nonpremixed jet flame
- •*Re_d* = 15,200
- • $f_{\rm S}$ = 10 kHz, sampling time period = 6 s

High-Repetition Rate Rayleigh Scattering Setup

Temperature and Dissipation Calculations

•Temperature:

$$T = \frac{I_{R,ref}T_{ref}}{I_R} = \frac{C}{I_R}$$

 $I_{R,ref}$ is the reference Rayleigh signal from air at room temperature (T_{ref}) , I_R is the Rayleigh signal

 Thermal dissipation rate (inferred by using Taylor's hypothesis)

$$\chi_{T,x} = 2\alpha U^{-2} (\partial T/\partial t)^2$$

Energy Spectra Correction

Centerline Turbulent Time Scales

Ratio of Outer Scales along Centerline

Why the dip near the flame tip?

- Why is there a dip in the integral scale near the flame tip?
- Similar effect seen by Renfro et al. (2002) with OH time-series
- Caused by state relationship between temperature and mixture fraction
- Shows that temperature fluctuations will exhibit smaller length scales than mixture fraction
- Shown empirically by Wang, Karpetis, Barlow (2007)

Corrected Energy and Dissipation Spectra

- PSDs computed by:
- auto-correlation (singleprobe)
- cross-correlation of two-point redundant (Panda & Seasholz, 2002)

recovered

Corrected Energy and Dissipation Spectra

- Spectra computed with:
 - Cross-correlation
 - Filtering with specially designed FIR filter to match rolloff of model spectrum
- Importantly, the peak and some rolloff of dissipation spectrum is seen
- Need the model spectrum to guide filtering

Corrected Dissipation Spectra, Re_d=15,000

Overlapping spectra indicate strong coupling between energy producing and dissipation scales

• May be problematic for models that require independence of dissipation scales

Conclusions

- Dissipation affected by interaction among spatial averaging, discrete sampling, gradient-filter and noise
- Many previous measurements in flames incompletely quantify these effects and are therefore suspect
- Our system model helps us to understand these effects and enables meaningful measurement of dissipation