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Motivation for Measuring Dissipation Rate

*Dissipation in Turbulent Nonpremixed
Combustion

* Nonpremixed flame structure strongly tied to
underlying scalar dissipation rate

* In fast chemistry limit the reaction rate is
proportional to scalar dissipation rate

* For finite rate chemistry the scalar dissipation
affects the degree of nonequilibrium

* Thermal dissipation may be used as a surrogate
for scalar dissipation

* Kinetic energy dissipation important for modeling
and understanding flame physics

* Very little is known of the dissipative structure of
turbulent flames




Characteristics of Dissipation Fluctuations
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Characteristics of Dissipation Fluctuations

Su & CIemens (2002)

* Instantaneous dissipation is much larger than the
mean

* Measurements of mean dissipation important in
turbulence modeling



Dissipative Scales

» Dissipation is important only at the smallest scales where
gradients are largest

» Kolmogorov (1941)

Kolmogorov scale: 7 = (V3/§)1/4 « Finest scale in velocity field
(Finest scale eddy?)

» Batchelor (1959) scale - Sc » 1
(Sc = v/ D, where D is the mass diffusivity)

Batchelor scale: Ay =75¢™? <« Finest scale in concentration field

» Obukhov-Corsin scale - Sc < 1

Obukhov-Corsin: A, =7Sc™**
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Energy Spectra of u'(t) and ou'/ot
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Spectral Cutoff Frequencies

* Batchelor Frequencies: o D|SS|pat|on Spectrum
1 U f /60x | |
=— fo=—— N
e 2y
* Typically data are filtered to fg
and sampled at 2 fj

PSD

* Both Batchelor frequencies
correspond to a physical
lengthscale of A=635

: § kg and fy correspond to Ay defined by
Buch & Dahm (1998)




The Problem of Noise

Comparison of Dissipation Spectra

Anselmet, Djeridi,
Fulachier (1997)

BT T
f (Hz)

Cold-wire dissipation

Dowling (1991)

Non-reacting flow

spectrum computed
without filtering

Rayleigh scattering
(20W laser, ethylene)



Resolution Requirements for Mean Dissipation

*Wyngaard (1971) ; Antonia & Mi (1993): 2-3n
* George and Hussein (1991): <1n

* Ewing, Hussein, George (1995): 3n

* Anselmet, Djeridi, Fulachier (1997): 3to 67

* Buch & Dahm (1998): The smallest turbulent structures
are of order 67

*Su & Clemens (2002): The smallest turbulent structures
are of order 77



Mean Scalar Dissipation: Su & Clemens (1999)

%/(Uo/h)

109 t

60 70 a0 90 100 110 120 130
b y/h

Bilger (2004): Measurements should
obey global conservation




Measurement System Model
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Measurement System Model

For 1D linear operations, these sub-models can
be characterized as:

Measurement with

6 =h*0+n >, _

o additive noise
0, =h,*6, Post-processing
0, —> 0, Data-reduction
g, =h,*6, Gradient

y=2D]g,. [ Dissipation



Measurement System Model

* Model resolution and noise effects on turbulence by using
Pope’s (2000) model spectrum
/ HGO) D(x) = 2vx2E(x)

(a) 1 1.6[ —Re =50 (b)
[ -— Re =130
1.2y - - Re, =500
i N\ Re =1500
D(x) :

-=-= Corrsin(1964)-Pao(1965)
N Smith-Reynolds(1991)

10* 0.0 0.5 1.0 1.5 2.0
KKy K| icg

* Similar to probe resolution studies by Wyngaard (1971);
Ewing, George, Hussein (1995)



Spatial Averaging Effect

Averaging Filter Transfer Function

(e.g. blur, pixel si
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Effect of Gradient Stencill

* Resolving efficiency of the gradient stencill
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* Severe attenuation with central difference

* Better performance with high order Padé scheme



Resolution + Gradient Stencil Effect

* Perfect (spectrally
sharp) filters don’t
show resolution
error until filter
width about 5y

* Box filter:
averages over
box width A,

< 1)m>/< x>
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* 2nd Order central difference (sampled at twice cutoff k)

* All techniques attempting to measure same physical scale but
have different resolution requirements to do so



Effect of Noise on Spectra

* Energy spectrum with noise
floor
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Effect of Resolution and Noise
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Time-Resolved Thermal Dissipation in
Turbulent Nonpremixed Jet Flames




Thermal Dissipation

*|t is difficult to make accurate mixture fraction
dissipation measurements in flames
* Instead use thermal dissipation as a surrogate for
obtaining information about
* Higher signals for Rayleigh scattering vs. Raman
* Can get time-resolved datal!

* Obtain basic information about turbulence
characteristics (frequencies, length-scales, etc.)

* Obtain estimates of resolution requirements valid
for scalar dissipation



Experiment

* Two-point-redundant high-repetition rate laser Rayleigh system
*High average power (72 W) Nd:YAG laser at 532nm
*10 kHz repetition rate
* Spatial resolution 300 um, beam diameter, slit width, separation
*SNR ~ 65 for air at room temperature

* Fuel
©22.1% CH4, 33.2% H2 and 44.7% N2
*TNF workshop simple jet flame (DLR_A)

* Bergmann et al. (1998)

* Meier et al. (2000)

* Schneider et al. (2003)
*Const effective Rayleigh

cross-section (£3%)

* Conditions
* Coflowing, nonpremixed jet flame
*Re, = 15,200
*fg = 10 kHz, sampling time period = 6 s




High-Repetition Rate Rayleigh Scattering Setup
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Temperature and Dissipation Calculations

*Temperature: T — lre Tt _ C

e e

I; ef IS the reference Rayleigh signal from air at room
temperature (T, I Is the Rayleigh signal
*Thermal dissipation rate (inferred by using
Taylor’'s hypothesis)

Ir o =200 72(0T Jor)



Energy Spectra Correction

_2 Energy Spectra
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Centerline Turbulent Time Scales

° Outer time scale: 10} Centerline autocorrelation___ . -
T, = S /Uc 08 functions Zg 228 |
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* Integral time scale: 056 ] x/d =80 ]
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Ratio of Outer Scales along Centerline

x/d

Nonreacting axisymmetric jet
(Wygnanski & Fiedler, 1969): 1/0 =17, /7, =0.226



Why the dip near the flame tip?

* Why is there a dip in the integral y
scale near the flame tip? i /\

* Similar effect seen by Renfro et 300
al. (2002) with OH time-series 3 T

* Caused by state relationship < ] >

between temperature and £
mixture fraction [T T T /7777 — &

* Shows that temperature -
fluctuations will exhibit smaller
length scales than mixture T ]
fraction

* Shown empirically by Wang,
Karpetis, Barlow (2007) t




Corrected Energy and Dissipation Spectra

PSDs computed by:

* auto-correlation (single-
probe)

* cross-correlation of
two-point redundant
(Panda & Seasholz,
2002)

* low-pass filtering
R = (T, *T, ) +(n; *n;)

— Tr*Tr zRXX
(T*T)

D, (M (Vs)

Noise is averaged out and true

autocorrelation function is
recovered
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Corrected Energy and Dissipation Spectra

* Spectra computed with:

* Cross-correlation

* Filtering with
specially designed
FIR filter to match
rolloff of model
spectrum

* Importantly, the peak
and some rolloff of
dissipation spectrum is
seen

* Need the model
spectrum to guide
filtering
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Corrected Dissipation Spectra, Re,=15,000

Overlapping spectra indicate strong coupling between energy
producing and dissipation scales
e May be problematic for models that require independence
of dissipation scales




Conclusions

*Dissipation affected by interaction among spatial
averaging, discrete sampling, gradient-filter and
noise

°*Many previous measurements in flames
iIncompletely quantify these effects and are
therefore suspect

* Our system model helps us to understand these
effects and enables meaningful measurement of
dissipation



